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ABSTRACT: It has become a norm to perform the 

analysis of plane truss structures based on the 

assumptions that (1) members are connected at 

joints by frictionless pins and (2) loads are applied 

at joints only. However, it is a fact that practical 

trusses are always constructed by connecting 

members to gusset plates using welds, rivets, or 

high-strength bolts and loads may not necessarily 

be applied only at the nodes. By the nature of 

practical nodes connections, joints in trusses are 

rigid and not frictionless pins and as such analyzing 

plane trusses as rigidly connected nodes yields 

more precise results. This work proposes a finite 

element model for plane truss analysis with rigid 

joints as compared to frictionless pin joints in both 

static and dynamic (modal) forms. Computer 

programs using MATLAB codes were developed 

for the analysis and the commercial software 

ROBOT Structural Analysis Software was used to 

cross check results obtained using the developed 

MATLAB solution. The results showed that trusses 

where pin joints were assumed resonate faster than 

those where rigid joints were assumed, and axial 

stresses were found to be smaller in members with 

rigid joints than those with pin joints. 

Keywords: Finite element analysis, Trusses, 

MATLAB computer program, ROBOT software 

 

I. INTRODUCTION 
Fundamentally, the behavior of all types 

of structures – framework, plates, shells or trusses 

is described by means of differential equations. In 

practice, the writing of differential equations for 

truss structures is rarely necessary. It has been long 

established that such structures may be treated as 

assemblage of one-dimensional members. Exact or 

approximate solutions to the ordinary differential 

equations for each member are well-known. These 

solutions can be cast in the form of relationships 

between the forces and the displacements at the 

ends of the members. Proper combinations of these 

relationships with the equations of equilibrium and 

compatibility at the joints and supports yield a 

system of algebraic equations that describes the 

behavior of the structure. 

 Structures consisting of two- or three- 

dimensional components- plates, trusses, 

membrane shells, solids are more complicated in 

that rarely do exact solutions exist for applicable 

partial differential equations as said before. One 

approach to obtaining practical, numerical 

solutions is the finite element method. The basic 

concept of the method is that a continuum (the total 

structure) can be modeled analytically by its 

subdivision into regions (the finite elements) [20], 

„each of the behavior is described by a set of 

assumed functions representing the stresses or 

displacements in that region‟. This permits the 

problem formulation to be altered to one of the 

establishment of a system of algebraic equations. 

Therefore, the high speed precise 

computing and increased memory of the computers 

have made it possible to solve complex models. 

Finite element method and matrix methods are the 

two methods which show great compatibility for 

computing processes and have become the most 

powerful tools in many engineering branches. 

Therefore, analysis that was considered 

cumbersome and consequently avoided can now be 

carried out easily using finite element method 

which has a great potential of being easily 

programmed especially with such computing 

language like MATLAB (used in this work) that 

has codes which can easily manipulate and solve 

mathematical problems. This has made actual 

structures like plane trusses to be analyzed based 

on its true service conditions (nodes connections 

and loadings) without assuming conditions 

(frictionless pins connection and loads only acting 

at the joints) for the purpose of simplifying the 

analysis that this can lead to results that are not 

precise or uneconomical in designs. 

 This work, analysis of rigid-jointed plane 

truss structures using finite element analysis 

technique tries to understudy analysis of plane 

trusses using the assumptions of frictionless pins 

joints and loads acting only at the joints to develop 
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plane truss analysis with rigid joints and no 

restriction of loading conditions. It modeled rigid 

jointed plane truss as plane frames, then uses 

stiffness method to formulate the stiffness and mass 

matrices. Finite element interpolation functions for 

truss element formulation was used to obtain 

formula for strain and stresses and equivalent nodal 

loads in the case of uniformly distributed loads and 

point loads. The work was carried out in two 

phases namely: (1) static analysis and (2) modal 

analysis.  

 

1.2 STATIC ANALYSIS 

Static analysis of plane truss structures 

using finite element analysis technique is achieved 

by converting nodal coordinates of the truss 

structure from local coordinates to global 

coordinates system [2]. The stiffness matrix of 

individual members were calculated and then 

transformed into the global stiffness matrix using 

conversions outlined in the next section for both 

frictionless pin joints and rigid joints. The elements 

by elements global stiffness matrix are then 

assembled into the structure stiffness matrix by 

direct combination procedure[8]. This was then 

followed by providing constraints to the finite 

element equation of the plane truss problem 

KU = F .  .  .  .  .  .  .  .  .  .  . .   .  . . . .    .. .  1.1 

Where K is the stiffness matrix, U is the 

displacement vector and F is the force vector. 

  Displacements are first sort as the 

primary variables and the values are substituted 

back into the equation1.1 to find secondary 

variables such as supports reactions, strains and 

stresses. The procedure is the same for both 

assumptions of pin and rigid joints, only that in 

addition to axial stresses bending stresses were also 

evaluated in the case of rigid joints. 

 

1.3 MODAL ANALYSIS 

Modal analysis is the study of the dynamic 

properties of structures under vibrational excitation 

[24].When a structure undergoes an external 

excitation, its dynamic responses are measured and 

analyzed. This process of measuring and analyzing 

is called modal analysis. Modal analysis can be 

used to measure the response of a car‟s body to a 

vibration when vibration of an electromagnetic 

shaker is attached or the pattern created by noise of 

a loudspeaker which acts as excitation [27] 

 In structural engineering, modal analysis 

is applied to find the various periods that the 

structure will naturally resonate at, by using the 

structural overall mass and stiffness. The modal 

analysis is very important in earthquake 

engineering, because the periods of vibration 

evaluated helps in checking that a building‟s 

natural frequency does not coincide with the 

frequency of earthquakes prone region where the 

building is to be constructed. In case a structure‟s 

natural frequency coincidentally equals an 

earthquake‟s frequency, the structure suffers severe 

structural damage due to resonance [36] 

 The frequency and mode shape of a model 

is determined by modal analysis. When the models 

are subjected to cyclic or vibration loads, the 

dynamic response of structures due to these 

external loads acting, which include resonance 

frequencies (natural frequencies), mode shape and 

damping,are estimated. 

 

2.1 FORMULATION OF FLEXURE BEAM 

ELEMENT 

Using the elementary beam theory, the 2-D beam 

or flexure element is now developed with the aid of 

the first theorem of Castigliano. The assumptions 

and restrictions underlying the development are the 

same as those of elementary beam theory with the 

addition of 

1. The element is of length L and has two nodes, 

one at each end. 

2. The element is connected to other elements only 

at the nodes. 

3. Element loading occurs only at the nodes. 

Recalling that the basic premise of finite 

element formulation is to express the continuously 

varying field variable in terms of a finite number of 

values evaluated at element nodes, we note that, for 

the flexure element, the field variable of interest is 

the transverse displacement v(x) of the neutral 

surface away from its straight, undeflected 

position. As depicted in Figure 4.3a and 4.3b, 

transverse deflection of a beam is such that the 

variation of deflection along the length is not 

adequately described by displacement of the end 

points only. The end deflections can be identical, as 

illustrated, while the deflected shape of the two 

cases is quite different. Therefore, the flexure 

element formulation must take into account the 

slope (rotation) of the beam as well as end-point 

displacement. In addition to avoiding the potential 

ambiguity of displacements, inclusion of beam 

elements, thus precluding the physically 

unacceptable discontinuity depicted in Figure 3.1c. 
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Figure 2.1 (a) and (b) Beam elements with identical end deflections but quite different deflection 

characteristics. (c) Physically unacceptable discontinuity at the connecting node. 

 

In light of these observations regarding 

rotations, the nodal variables to be associated with 

a flexure element are as depicted in Figure 3.2. 

Element nodes 1 and 2 are located at the ends of 

the element, and the nodal variables are the 

transverse displacements v1 and v2 at the nodes 

and the slopes (rotations) _1 and _2. The nodal 

variables as shown are in the positive direction, and 

it is to be noted that the slopes are to be specified in 

radians. For convenience, the superscript (e) 

indicating element properties is not used at this 

point, as it is understood in context that the current 

discussion applies to a single element. When 

multiple elements are involved in examples to 

follow, the superscript notation is restored. 

 

 

 

The displacement function v(x) is to be discretized such that nodal displacement 

 

.    .    .   .   .   .   .   .   .   .     . 2.1 

 

 

subject to the boundary conditions 

.     .    .     .    .   .   .    .   .    .    .   .        2.2 

 

.   .   .   .   .   .   .   .   .   .   .      .   .          2.3 

 

 

.   .   .   .   .   .      .   .   .   .   .   .   .         2.4 

 

 

.   .  .   .   .   .  .   .   .   .   .   .   .   .          2.5 

 

 

 

Considering the four boundary conditions and the one-dimensional nature ofthe problem in terms of the 

independent variable, we assume the displacement function in the form 

 

.  .     .   .   .   .   .  2.6 

 

Application of the boundary conditions 3.2–3.5 in succession yields 

 

.   .   .    .    .    .   .   .   .   .   .  .     2.7 
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……….2.10 

Figure 2.2Bending moment diagram for a flexure element. Sign convention per the strength of materials 

theory. 

 

Equations 3.7–3.10 are solved simultaneously to obtain the coefficients in terms 

of the nodal variables as 

.      .       .     .      .       .       2.11 

 

.      .       .      .      .      .        2.12 

 

 

.      .        .       .      .      .       2.13 

 

 

………………………………2.14 

 

Substituting Equations 3.11–3.14 into Equation 4.17 and collecting the coefficients of the nodal variables results 

in the expression: 

 

 

 

 

. . . . . . 2.15 
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which is of the form 

 

. . .  ..  .  .   . 2.16 

 

 

or, in matrix notation, 

 

 

.   .  .  .  .  .  .  .  .   .  2.17 

 

 

 

whereN1, N2, N3, and N4 are the interpolation functions that describe the distribution 

of displacement in terms of nodal values in the nodal displacement  vector 

. 

For the flexure element, it is convenient to introduce the dimensionlesslength coordinate 

.       .         .            .          .          .                .          .         .         .       2.18 

 

so that Equation 3.26 becomes 

 

 

. . . 

2.19 

 

Using Equation 2.11 in conjunction with Equation 3.17, the normal stress distribution on a cross section located 

at axial position x is given by 

 

 

 …………………………………………………….2.20 

 

Since the normal stress varies linearly on a cross section, the maximum and minimum values on any 

cross section occur at the outer surfaces of the element, where distance y from the neutral surface is largest. As 

is customary, we take the maximum stress to be the largest tensile (positive) value and the minimum to be the 

largest compressive (negative) value. Hence, we rewrite Equation 3.30 as 

 

. . . .   .   .  .   .  .    .   .   . .  .                                          2.21 

 

. . .3.22 

 

Observing that Equation 3.21 indicates a 

linear variation of normal stress along the length of 

the element and since, once the displacement 

solution is obtained, the nodal values are known 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 4 Apr. 2021,  pp: 429-459  www.ijaem.net      ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-0304429459       Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal   Page 434 

constants, we need calculate only the stress values 

at the cross sections corresponding to the nodes; 

that is, at x = 0 and x = L. The stress values at the 

nodal sections are given by 

 

 

. . .   .  .  .  .  .  .  .  .    2.23 

 

 

 

. .   .   .  .  .  .  .  .  ..   2.24 

 

 

 

 

2.2 FLEXURE ELEMENT STIFFNESS MATRIX 

The total strain energy is expressed as 

 

. …  . . .. . . .. . .. .  . .. . . .   .   .  . . ..  .   .   .   . .  . .. . . . 2.25 

 

 

whereV is total volume of the element. Substituting for the stress and strain per 

Equations 3.5 and 3.6, into equation 3.25 

 

 

 

 

.  . . .   . ..  .   .  . .   .   ..    .  .   .   .   .  ..  .   . ..2.26 

 

 

 

which can be written as: 

 

 

 

.  . . .. . .. . .. . . . … .. . . .. .2.27 

 

 

 

Again recognizing the area integral as the moment of inertia Izabout the centroidal axis perpendicular to the 

plane of bending, we have 

 

 

 

. . .. . . .. . …..    .. . .. . .. .. .     . .. . . . . 2.28 

 

 

 

Equation 2.38 represents the strain energy of bending for any constant cross-section beam that obeys the 

assumptions of elementary beam theory. For the strain energy of the finite element being developed, we 

substitute the discretized displacement relation of Equation 3.27 to obtain 

 

.. .2.29 

. 

as the approximation to the strain energy. 

Applying the first theorem of Castigliano to the strain energy function with respect to nodal displacement v1 

gives the transverse force at node 1 as 
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..2.30 

 

while application of the theorem with respect to the rotational displacement gives the moment as 

 

.2.31 

 

For node 2, the results are 

..2.32 

..2.33 

Equations 3.29–3.32 algebraically relate the four nodal displacement values to the four applied nodal forces 

(here we use force in the general sense to include applied moments) and are of the form 

 

 

 

.  .   .   .   .  .  .   .  .   .  . 2.34 

 

 

 

 

wherekmn, m, n = 1, 4 are the coefficients of the element stiffness matrix. By comparison of Equations 3.40–

3.43 with the algebraic equations represented by matrix Eqution 4.44, it is seen that 

 

 

 

.  .   .   .  .  .  .   .  2.35 

 

and the element stiffness matrix is symmetric, as expected for a linearly elastic element. 

Prior to computing the stiffness coefficients, it is convenient to convert the integration to the dimensionless 

length variable  = x/L by noting 

 

 

 

.  .   .   .   .   .  .  .  .  .  .  . 2.36 

 

. . … .. .     .  .    .   .               2.37 

 

so the integrations of Equation 2.36 become 
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      ..2.38 

 

 

 

 

 

                           . .   2.39 

 

The stiffness coefficients are then evaluated as follows: 

 

 

                                                                                                             

2.40 

 

The complete stiffness matrix for the flexure element is then written as 

 

 

.   . .     .    .   .   .   .     2.41 

 

 

 

 

 

2.3 STIFFNESS MATRIX FOR RIGID 

JOINTED PLANE TRUSS MEMBER 

 Due to fixity of the joints, this class of 

element is modeled as a flexure element with axial 

loading as shown on fig.3.4.   It is seen that in 

addition to the nodal transverse deflections and 

rotations, there are displacements in the nodes. This 

means that, the total degrees of freedom for each 

element are six with each node having three global 

degrees of freedom, two displacements in global 

axis and one rotation. 

 
Figure 2.3:Nodal displacements of rigid jointed plane truss member 
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This being the case, we can simply add the spartial element stiffness matrix to the flexure element stiffness 

matrix to obtain the 6 × 6 element stiffness matrix for a rigid jointed plane truss element as follows: 

    2.42 

  

 

which is seen to be simply 

                                                          2.43 

and is a non-coupled superposition of axial and bending stiffnesses. 

 

For plane truss structures, orientation of the element in the global coordinate system must be 

considered. Fig 2.5a depicts an element oriented at an arbitrary angle from the X axis of a global reference 

frame and shows the element nodal displacements. Before proceeding, note that it is convenient here to reorder 

the element stiffness matrix given by Equation 3.43 so that the element displacement vector in the element 

reference frame is given as 

 

 

 

 

 

 

 .    .      .    .                 .                .                          2.44 

  

 

 

 

 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 4 Apr. 2021,  pp: 429-459  www.ijaem.net      ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-0304429459       Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal   Page 438 

 
Figure 2.4: (a) Nodal displacements in the element coordinate system. (b) Nodal displacements in the 

global coordinate system. 

 

And the element stiffness matrix becomes:                                                                                                                                                                                                                                  

 

 

 

 

 

                                                                                                                                            ……………. 2.45 

Using Fig 3.4 the element displacements are written in terms of the global displacemen

  
Equations 2.46 can be written in matrix form as 

 

 

 

 

 

 . . 2.47 

                               2.47 

 

 

 

 

 

 

 where [R] is the transformation matrix that relates element displacements to global displacements. 

Therefore, the 6 × 6 element stiffness matrix in the global system is given by 

. .   .     .     .     .      .       .     .     .      .       .       2.48 

Carrying out matrix multiplication gives: 

               a3     a4      a5      -a3      -a4       a5 

a4     a6      a7      -a4      -a6       a7 

K=         a5     a7      a1      -a5      -a7       a2 .      .      .        .         .      .         2.49 

-a3   -a4     -a5        a3            a4          -a5 

-a4   -a6     -a7      a4       a6       -a7 

 a5     a7      a2      -a5      -a7       a1 
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Where, 

a1= 4EI/L 

a2 = 2EI/L 

a3 = (AE/L)c
2
 + (12EI/L

3
)s

2 

a4 = (AE/L)cs - (12EI/L
3
)cs     .       .       .       .        .     .    2.50 

a5 = -(6EI/L
2
)s 

a6 = (AE/L)s
2
 + (12EI/L

3
)c

2
 

a7=  (6EI/L
2
)c 

and,  A=cross sectional area of element in m
2
, E is modulus of elasticity in kn/m

2
, L is the length of element in 

metre(m) 

c =  

s =  

 

 

2.4 EQUIVALENT NODAL LOAD VECTOR 

OF RIGID JOINTED PLANE TRUSS 

SUBJECTED TO OUT OF JOINT 

TRANVERSE LOADING 

In the derivation of bending stress of a 

flexure element loads were restricted to be applied 

at the nodes. But in some real cases loads may not 

only act at the nodes since we can have point loads 

at any section of the element or distributed loads in 

the case of dead loads. In this section, we derive 

work equivalent nodal load vectors that will 

actually give the same impact of the applied load at 

the nodes. Having in mind that the rigid jointed 

plane truss elements are modeled as a flexure 

element, the following derivation holds: 

1.  A point load on the rigid jointed plane truss 

bar.  This is modeled as a flexure element with 

fixed ends. The truss element is divided into 

two elements with a node at the point of 

application of the force as shown below. 

 

 
Figure 2.6: Flexure element with node at the point of application of a point load along the element 

 

Recalling stiffness matrix of a flexure element as: 

.   .      .      .      .      .     2.51 

Considering element 1, stiffness matrix for element 1 is as follows: 

                    12           6x         -12         6x 

K
1
= EI/x

3
     6x         4x

2
        -6x        2x

2 
.      .      .        .        .       .        .        .                          2.52 

                          -12        -6x         12        -6x 

                           6x         2x
2
       -6x        4x

2
 

 

Considering element 2, stiffness matrix for element 2 is as follows: 

 

                           12          6(L-x)         -12         6(L-x) 

                          6(L-x)    4(L-x)
2
      -6(L-x)   2(L-x)

2 
.      .     .      .       .      .                                   2.53 

K
2
=      EI/(L-x)

3 
      -12        -6(L-x)         12        -6(L-x) 

                                 6(L-x)    2(L-x)
2
     -6(L-x)   4(L-x)

2 
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Assembling the global stiffness matrix, the resultant components of the global stiffness matrix are. 

K11 = K11
(1)

 = 12EI/x
3
 

K12 = K12
(1)

 = 6EIx/x
3
 

K13 = K13
(1)

 = -12EI/x
3
 

K14 = K14
(1)

 = 6EIx/x
3
 

K15 = 0 

K16 = 0 

K21 = K21
(1)

 = 6EIx/x
3
 

K22 = K22
(1)

 = 6EIx/x
3
 

K23 = K23
(1)

 = -6EIx/x
3
 

K24 = K24
(1)

 = 2EIx
2
/x

3
 

K25 = K25
(1)

 = 0 

K26 = K26
(1)

 = 0 .      .     .      .      .    .     2.54 

K12 = K12
(1)

 = 6EIx/x
3
 

K31 = K31
(1)

 = -12EI/x
3
 

K32 = K32
(1)

 = -6EIx/x
3
 

K33 = K33
(1)

 + K33
(2)

 = 12EI/x
3
 + 12EI/(L-x)

3
 

K34 = K34
(1)

 + K34
(2)

 = -6EIx/x
3
 + 12EI(L-x)/(L-x)

3
 

K35=  K35
(2)

 = -12EI/(L-x)
3
 

K36=  K36
(2)

 = 6EI(L-x)/(L-x)
3
 

K41 = K41
(1)

  = 6EIx/x
3
 

K42 = K42
(1)

  = 2EIx
2
/x

3
  

K43 = K43
(1)

 + K43
(2)

 = -6EIx/x
3
 + 6EI(L-x)/(L-x)

3
 

K44 = K44
(1)

 + K44
(2)

 = 4EIx
2
/x

3
 + 4EI(L-x)

2
/(L-x)

3
 

K45 = K45
(2)

 =  -6EI(L-x)/(L-x)
3
 

K46=  K46
(2)

 =  2EI(L-x)
2
/(L-x)

3
 

K51 = 0 

K52 = 0 

K53 = K53
(2)

 = -12EI/(L-x)
3
 

K54=  K54
(2)

 =  -6EI(L-x)/(L-x)
3
 

K55=  K55
(2)

 =  12EI/(L-x)
3 

 

K56 = K33
(2)

 =  -6EI(L-x)/(L-x)
3
 

K61 = 0 

K62 = 0 

K63 = K63
(2)

 = 6EI(L-x)/(L-x)
3
 

K64=  K64
(2)

 = 2EI(L-x)
2
/(L-x)

3
 

K65 =  K33
(2)

 =  -6EI(L-x)/(L-x)
3
 

K66=  K66
(2)

 = 4EI(L-x)
2
/(L-x)

3
 

Therefore the global stiffness matrix is as follows: 

 

K=  K11      K12      K13     K14     K15      K16 

       K21      K22      K23     K24     K25      K26 

       K31      K32      K33     K34     K35      K36 .       .          .         .       .         .                 2.55 

       K41      K42      K43     K44     K45      K46 

       K51      K52      K53     K54     K55      K56 

       K61      K62      K63     K64     K65      K66 

 

From the general form, 

KU = F .       .      .       .      .     .      .       .             .            .      .                                       2.56 
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Where,                              v1 

                                         Ө1         

                  U      =            v2 

                                          Ө2 .  .        .         .       .      .      .      .      .      .                         2.57 

                                           v3 

                                           Ө3 

 

 

            F1 

M1 

F    =    F2 .      .       .      .        .       .      .      .       .     .     .       2.58 

 

            M2 

            F3 

            M3 

 

 

       K11      K12      K13     K14     K15      K16                       v1 F1 

       K21      K22      K23     K24     K25      K26                      Ө1                                      M1 

        K31      K32      K33     K34     K35      K36                     v2 F2 .     .      .    2.59 

       K41      K42      K43     K44     K45      K46                      Ө2                   =  M2 

       K51      K52      K53     K54     K55      K56 v3 F3 

       K61      K62      K63     K64     K65      K66 Ө3 M3 

 

 

Consider a fixed ended truss member with the following support conditions 

Applying boundary conditions: 

v1=  v3 = Ө1 = Ө3 = 0 .     .     .      .       .        .         .        .          .           .        .              2.60 

Therefore, 

 

K33     K34                 v2 =     F2 .         .          .            .            .         .            .            2.61 

K43     K44                 Ө2    M2 

 

But, F2 = -P and M2 = 0; 

Substituting the expressions for K33, K34, K43 and K44 in the above equation we obtain: 

 

 12EI/x
3
 + 12EI/(L-x)

3  
          -6EIx/x

3
 + 12EI(L-x)/(L-x)

3 
v2             =    -P.     .     .    2.62 

   -6EIx/x
3
 + 6EI(L-x)/(L-x)

3 
4EIx

2
/x

3
 + 4EI(L-x)

2
/(L-x)

3 
Ө2 0 

 

At x = L/2, 

V2 =  -PL
3
/ (192EI) .       .         .      .       .          .                 .         .             .           .            2.63 

Ө2 =  0 

Substituting the nodal displacement values into the constraints equation gives: 

F1 = P/2 

M1 = PL/8 

M2 = 0 .       .      .     .          .       .      .         .        .       .        .              .         .      2.64 

F2  = -P 

M3 = -PL/8 

F3 = P/2 
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Therefore, the equivalent force vector, for a rigid truss member subjected to point load at the centre is as 

follows: 

                     F1              P/2 

    F      =      M1         =     -PL/8 .       .         .       .        .         .        .         .         2.65 

                     F3                           -P/2 

                    M3                            PL/8  

 

 

Uniformly distributed load on a fixed ended 

plane truss member.   

The restriction that loads be applied only 

at element nodes for the flexure element must be 

dealt with if a distributed load is present. The usual 

approach is to replace the distributed load with 

nodal forces and moments such that the mechanical 

work done by the nodal load system is equivalent 

to that done by the distributed load. Referring to 

Figure 3.7, the mechanical work performed by the 

distributed load can be expressed as: 

 
 

Figure 2.7:  work equivalent nodal forces and moment for a uniformly distributed load 

 

 .      .       .        .          .        .       .   .           .    2.66 

 

 

The objective here is to determine the equivalent nodal loads so that the workexpressed in Equation 3.66 is the 

same as: 

 

.    .       .     2.67 

 

 

whereF1q , F2q are the equivalent forces at nodes 1 and 2, respectively, and M1q and M2q are the equivalent 

nodal moments. Substituting the discretized displacement function given by Equation 3.16, the work integral 

becomes: 

 

 

.    .   .   

2.68 
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Comparison of Equations 3.67 and 3.68 shows that 

 

 

 
                                          .      .        .      .       .        .       .   .     .     

2.69 

 
Hence, the nodal force vector representing a distributed load on the basis of work equivalence is given by 

Equations 3.69. For example, for a uniform load q(x )= q = constant, and also substituting the interpolation 

functions 

 

N1 = 1 – 3x
2
 /L

2 
+2x

3
 /L

3
 

N2 = x – 2x
2
 /L + x

3
 /L

2 
.      .      .          .         .        .       2.70 

N3 = 3x
2
 /L

2
 – 2x

3
 /L

3
 

N4 = x
3
/L

2
– x

2
 /L 

 

and integrating them within specified limits yields: 

 

            F1q    qL/2 

 F    =   M1q        =         -qL
2
/12 .      .        .         .         .       . 2.71 

            F2q                               qL/2 

            M2q   qL
2
/12 

 

Which is the nodal equivalent loads on the element.  

 

2.5 BENDING STRESSES IN RIGID JOINTED 

PLANE TRUSS MEMBER 

For plane truss structures, orientation of 

the element in the global coordinate system must 

be considered. Fig 2.4a and b depicts an element 

oriented at an arbitrary angle from the X axis of a 

global reference frame and shows the element 

nodal displacements in both local and global 

coordinates. This orientation of the element was 

not considered in deriving bending stresses of 

equations 3.22 and 3.23, so re-arranging the 

equations considering the orientation of the 

element in global reference frame yields as follows: 

From eq. 2.23, 

.      .       .       .       2.72 

 

 

σx(x=0) = ymaxE[ 6v2/L
2 
– 6v1/L

2 
- 4Ө1/L - 2Ө2/L] .      .      .       .     .     .      .      .      2.73 

re-arranging in an ascending order gives: 

σx(x=0) = ymaxE[ 6v1/L
2 
- 4Ө1/L+ 6v2/L

2 
 - 2Ө2/L] .      .      .     .     .       .       .     .     .     2.74 

substituting eq. 3.46 for v1, Ө1, v2, Ө2 in eq. 3.74 gives: 

σx(x=0) = ymaxE[ 6sU1/L
2 
– 6cU2/L

2 -
4U3/L– 6s U4/L

2 
+ 6c U5/L

2 
 + 2 U6/L]  .     .    .    .     2.75 
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in matrix form gives: 

σx(x=0) = ymaxE[ 6s/L
2    

-6c/L
2     -

4/L -6s /L
2 
    6c /L

2 
   2 /L]     U1 

                                                                                                     U2 

                                                                                                      U3                        .     .     .     .       2.76 

                                                                                                      U4 

                                                                                     U5 

                                                                                                       U6 

 

Similarly, eq. 3.24 is re-arranged as follows: 

 

  σx(x=L) = ymaxE[ -6s/L
2    

6c/L
2     

2/L 6s /L
2 

-6c /L
2 
4 /L]                               U1 

                                                                                                                          U2 

  U3 .     .      .    .    2.77 

  U4 

  U5 

  U6 

 

 

2.6 AXIAL  STRESSES IN RIGID JOINTED PLANE TRUSS MEMBER 

From, σx=Eε .        .       .        .        .          .           .          .        .            .         2.78 

where, 

ε = (u2 – u1)/L .        .         .        .           .       .               .             .                            2.79 

σx = E(u2 – u1)/L .         .         .         .         .        .          .       .        .          .                   2.80 

substituting, expressions for u1, u2 in eq. 3.46 Into eq. 3.80 Gives: 

σx = E[ -cU1– sU2 +cU4+sU5]     .        .        .         .        .           .          .          .                           2.81 

converting the above equation into matrix form gives 

 

σx = E[ -c-s  0  c  s  0  ]      U1 

                                            U2 

                                            U3.          .        .         .          .          .         .          .                                  2.82 

                                            U4 

                           U5 

                                            U6 

 

2.7 MODAL ANALYSIS (NATURAL 

FREQUENCY) 

2.7.1 FORMATION OF LUMP MASS 

MATRIX 

By taking the flexural effects of the 

members into consideration and by using the lump 

mass method, the mass influence coefficient for 

axial effects of rigid jointed truss element is found 

out. Combining the mass matrix for flexural effects 

with the matrix for axial effects we obtain the lump 

mass matrix for a uniform element of a plane truss 

with rigid joint in reference to the modal 

coordinates. [ 34 ] 

 

Lump mass matrix is given the following equation: 

 

F1          = 𝜚AL/2    1      0      0         0        0      0                         U1 

F2                                    0     1       0         0        0      0 U2 

F3                                   0      0       1         0        0      0                         U3 ..         .        .       .2.83 

F4                       0      0       0         1        0      0 U4 

F5                       0      0       0         0        1      0 U5 

F6                                    0       0        0        0        0      1                        U6 

 

or in condensed notation, 

{F}  =  [Me] {U} .        .           .            .        .        .       .        .         .             .            .     2.84 

In which [M] is the lump mass matrix for the element of a rigidly jointed plane truss. 
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2.7.2 TRANSFORMATION FROM LOCAL TO GLOBAL CO-ORDINATE SYSTEM 

Repeating the procedure of transformation as applied to stiffness matrix , for the lump mass matrix we obtain in 

the similar manner 

 

{F}  =  [M] {U} …………………………………….  2.85 

In which, 

{M} =[R]
T
[Me][R] …………………………… 2.86 

 

2.7.3 CALCULATION OF EIGEN VALUE AND EIGEN VECTOR 

The structure is not excited externally in free vibration mode that is no force or support motion acts on it. So, 

under condition of free motion, dynamic analysis can be carried out and the important properties like natural 

frequencies mode shapes corresponding to the natural frequency can be obtained. 

 

2.7.4 NATURAL FREQUENCIES 

Since free vibration mode is considered, the structure is not under influence of any external force. Hence, the 

force vector in stiffness equation or flexible equations is taken as zero.  

By taking the above condition into consideration, the stiffness equation can be represented as: 

                                   ……………………………………… 2.87 

 

The solution of the above equation for undamped structure is in the form, 

Ui   =   ai  +    sin(⍵t-a)            i  =  1,2,3…….n                                                       …………… 2.88 

When represented as vector, 

{U}   =  {a}sin(⍵t-a)                                                          …………………………………………. 2.89 

Where ai is the amplitude of motion of nth coordinate and is the and n is the number of degree of freedom. 

Substituting equation 3.89 in equation 3.87, we get 

 

-⍵2
[M]{a}sin(⍵t-a) + [K]{a}sin(⍵t-a) = 0                                           ……………………           2.90 

Or 

[[K] - ⍵2
[M]] {a} = {0}                             …………………………………….                 2.91 

The mathematical problem for the formulation of the above equation is called eigenproblem. As the 

right hand side of the equation is equal to zero. It can be considered as a set of n number of homogeneous linear 

equations with n unknown displacements ai and  ⍵2 
as the unknown parameter, amplitude „a‟ cannot be zero. Its 

solution is non-trivial. So, 

   [[K] - ⍵2
[M]] = 0                          ……………………………….                  2.92 

The polynomial equation of degree n in ⍵2 
obtained is the characteristic equation and the values of  ⍵ 

are the natural frequency of the structure. The values that satisfy equation 2.92can be substituted in equation 

2.91 to obtain the amplitudes in terms of arbitrary constant. 

 

2.8 ORTHOGONALITY OF PRINCIPAL MODE 

The principal modes of vibration of systems with multiple degrees of freedom share a fundamental 

mathematical property known as orthogonality. The free-vibration response of a multiple degrees-of-freedom 

system is described by Equation below: 

……………………………. 2.93 

 

Assuming that we have solved for the natural circular frequencies and the modal amplitude vectors via the 

assumed solution form qi (t )= Ai sin(⍵t + ⍵), substitution of a particular frequency  ⍵i into Equation 3.93 

gives 

                                                                                                                           

………………………….. 2.94 

 

and for any other frequency ⍵j 

Multiplying Equation 3.93 by {A(j )}
T
and Equation 3.94by {A(i )}

T
gives 

  .         . .     .        .     2.95            
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 …………….. 2.96 

 

 

Subtracting Equation 2.96from Equation 2.95, we have 

…………………               2.97 

In arriving at the result represented by Equation 3.97, we utilize the fact from matrix algebra that [A]
T
[B][C] = 

[C]
T
[B][A] , where [A], [B], [C] are any three matrices for which the triple product is defined. As the two 

circular frequencies in Equation 10.104 are distinct, we conclude that 

                                                                                   

………………………….. 2.98 

 

Equation 3.98 is the mathematical statement of orthogonality of the principal modes of vibration. 

For a system exhibiting P degrees of freedom, we define the modal matrix as a P × P matrix in which the 

columns are the amplitude vectors for each natural mode of vibration; that is, 

……………………… 2.99 

and consider the matrix triple product [S] = [A]T [M][A] . Per the orthogonality condition, Equation 2.99, each 

off-diagonal term of the matrix represented by the triple product is zero; hence, the matrix [S] = [A]T[M][A] is a 

diagonalmatrix. The diagonal (nonzero) terms of the matrix have magnitude 

…………………. 2.100 

As each modal amplitude vector is known only within a constant multiple the modal amplitude vectors 

can be manipulated such that the diagonal terms described by Equation 3.100 can be made to assume any 

desired numerical value. In particular, if the value is selected as unity, so that 

…………………… 2.101 

where [I ] is the P × P identity matrix. 

Amplitude vectors are then normalized as follows: 

 

The corresponding diagonal term of the modal matrixis  

 

………………..        2.102 

 

If we redefine the terms of the modal amplitude vector so that 

 

………………….   2.103 

 

the matrix described by Equation 3.103 is indeed the identity matrix. 

Having established the orthogonality concept and normalized the modal matrix, we return to the general 

problem described by Equation 3.93, in which the force vector is no longer assumed to be zero. For reasons that 

will become apparent, we introduce the change of variables 

………………………….                                                   2.104 

 

Where,{ p} is the column matrix of generalized displacements, which are linear 

combinations of the actual nodal displacements {q}, and [A] is the normalized 

modal matrix. Equation 3.93 then becomes 

…………………….          2.105 
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Premultiplying by [A]
T
, we obtain 

………………….      2.106 

 

Now we must examine the stiffness effects as represented by [A]
T
[K ][A] . Given that [K] is a 

symmetric matrix, the triple product [A]
T
[K ][A] is also a symmetric matrix. Following the previous 

development of orthogonality of the principal modes, the triple product [A]T[K ][A] is also easily shown to be a 

diagonal matrix. The values of the diagonal terms are found by multiplying Equation 3.106 by A(i )
T 

to obtain 

…………………    2.107 

 

If the modal amplitude vectors have been normalized as described previously, Equation 3.107 is 

…………………………. 2.108 

 

hence, the matrix triple product [A]T [K ][A] produces a diagonal matrix having diagonal terms equal to the 

squares of the natural circular frequencies of the principal modes of vibration; that is, 

 

……………….           2.109 

 

 

 

 

 

 

Finally, Equation 10.115 becomes 

………………………                                   2.110 

 

with matrix [⍵2
] representing the diagonal matrix defined in Equation 1.111. 

where A is the mode shape(eigen vector). 

 

3.1  ANALYSIS  

In this section, static and dynamic 

analyses of rigid jointed and pin jointed plane truss 

structures are considered. Other forms of loadings 

other than the conventional loading (load must act 

at the joint) such as uniformly distributed loads and 

point loads are also considered. Equations and 

derivations emphasized in the previous sections 

using finite element analysis techniques are used in 

the analysis. 

 Parameters such as stresses in members, 

joints displacements, and reactions at the supports 

are sorted in the case of static analysis. While, 

natural frequencies and mode shapes are sort in the 

case of dynamic (modal) analysis. Both rigid and 

pin jointed plane truss structures are analyzed  for 

these parameters and their results are compared. 

 Robot structural analysis software, a 

commercial structural analysis software is used to 

cross check the results obtained from the computer 

program written in this project using MATLAB 

codes to analyze the plane truss structures. The 

program is based on the finite element method of 

structural analysis and is developed using 

MATLAB. Care was taken during input process as 

it has a great impact on the results. The input data 

in this program are: unit area of material, density of 

material, modulus of elasticity of material, nodal 

coordinates, prescribed degree of freedom of the 

system(PrescribedDof), and element nodes 

connections. 

 

Numerical example 1( pin jointed plane truss 

structures) 

Consider a modified warren truss for 

Railway Bridge shown in/ figure 3.1. The 

dimensions, nodal numberings, supports and 

loadings are as also shown on fig. 3.1. The 

elements are composed of 50 x 50 x 6 equal angle 

iron with the foll0wing properties: modulus of 

elasticity(E)= 205EKN/m
2
, density(𝜚)=7850Kg/m

3
, 

area(A) =0.000569m
2 . 
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Figure 3.1 Warren truss for Railway Bridge. 

 

The nodal coordinates and elements numbers are as follows: 

 
Figure 3.2 Nodal coordinates and element numbering. 

 

Nodes 1 and 11 are constrained by their 

support conditions. Therefore, U1 = U2 = U21 = U22 

= 0. The above equation is then reduced to 36 x 36 

matrix equation. The unknowns Us which are 

global displacements are then sort by solving the 

equation using MaTlab  as follows:    

 

NUMERICAL EXAMPLE2: RIGID JOINTED 

PLANE TRUSS STRUCTURES 

Considering figure 3.1 as a plane truss structure 

whose joints are replaced with rigid joints and the 

loadings and support conditions remains the same. 

SOLUTION 2 

The free body diagram of the structure is as 

follows: 

 
Tutorial 3( Uniformly distributed loads and out – of – joints point load) 
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Consider the truss structure shown below, 

all the joints in the structure are rigid jointed, its 

members have the same sectional properties as the 

structure in tutorial 2,  the loadings are also as 

shown and all dimensions are in metres. 

 
 

Solution: 

Work equivalent nodal loads are calculated using equations 3. And 3. As follows: 

Consider the top cord which is loaded as follows: 

 
 + 

 
 

But, 

Mq1 = ql
2
/12 = 8 x 3

2
 / 12 = 6Knm = - Mq2  

Mp1= PL/8 = 10 x 3/8 = 3.75Knm = - Mp2 

Fq1 =-qL/2 = -8 x3/2 =- 12Kn = -Fq2 

Fp1 = -P/2 = -10/2 = -5Kn = -Fp2 

Moment at the first external node = Mq1 + Mp1= 

9.75Knm 

Moment at the second external node = Mq2 + Mp2 

= - 9.75Knm 

Moment at the internal nodes = Mq1 + Mq2 + Mp1 

+ Mp2 = 0Knm 

Force at the external nodes = Fq1 + Fp1 = -17Kn 

Force at the internal nodes = Fq1 + Fp1 + Fq2 + 

Fp2 = 34Kn 

Therefore the work equivalent nodal loads on the 

structure are shown below: 

 
The structure universal coordinate system is the same as the one for tutorial 2 as shown below: 
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Since the structure geometry and member 

properties are the same with that of tutorial 2, the 

members‟ stiffness matrices are the same as and the 

global structure stiffness matrix is the same too. 

 

SOLTION BY MATLAB PROGRAM 

M - FILES 

a. FormStiffness2Dtruss.m – 

 This m.file calculates stiffness matrix for each 

element and assemble them for the entire structure. 

The script is written as follows: 

function [stiffness]=... 

formStiffness2Dtruss(GDof,numberElements,... 

elementNodes,numberNodes,nodeCoordinates,xx,y

y,EA); 

stiffness=zeros(GDof); 

for e=1:numberElements; 

formatlong 

indice=elementNodes(e,:) ; 

elementDof=[ indice(1)*2-1 indice(1)*2 

indice(2)*2-1 indice(2)*2] ; 

xa=xx(indice(2))-xx(indice(1)); 

ya=yy(indice(2))-yy(indice(1)); 

length_element=sqrt(xa*xa+ya*ya); 

C=xa/length_element; 

S=ya/length_element; 

k1=EA/length_element*[C*C C*S -C*C -C*S; 

C*S S*S -C*S -S*S;-C*C -C*S C*C C*S;-C*S -

S*S C*S S*S]; 

stiffness(elementDof,elementDof)=stiffness(eleme

ntDof,elementDof)+k1 

end 

 

b. FormMass2Dtruss.m – 

 This m.file calculate mass matrix for each element 

and assemble them for the entire structure. The 

script is written as follows: 

function 

[mass]=formMass2Dtruss(GDof,numberElements,.

.. 

elementNodes,numberNodes,nodeCoordinates,xx,y

y,rhoA); 

mass=zeros(GDof); 

for e=1:numberElements; 

indice=elementNodes(e,:) ; 

elementDof=[ indice(1)*2-1 indice(1)*2 

indice(2)*2-1 indice(2)*2] ; 

xa=xx(indice(2))-xx(indice(1)); 

ya=yy(indice(2))-yy(indice(1)); 

leng=sqrt(xa*xa+ya*ya); 

m1=(rhoA*leng/6)*[2 0 1 0;0 2 0 1;1 0 2 0;0 1 0 

2]; 

mass(elementDof,elementDof)=mass(elementDof,e

lementDof)+m1; 

end 

c. DisplacementsReactions- 

This computes and displays displacements and 

reaction outputs and the script is program as 

follows. 

 

%.............................................................. 

functionDisplacementsReactions... 

(displacements,stiffness,GDof,prescribedDof) 

formatlong 

disp('Displacements') 

jj=1:GDof; format 

[jj' displacements] 

F=stiffness*displacements; 

reactions=F(prescribedDof); 

disp('reactions') 

[prescribedDof reactions] 

 

d. Stress2Dtruss.m- 

This computes and displays stresses outputs and the 

script is programmed as follows: 

function 

stresses2Dtruss(numberElements,elementNodes,... 

xx,yy,displacements,E) 

% stresses at elements 

formatlong 

for e=1:numberElements; 

indice=elementNodes(e,:); 

elementDof=[ indice(1)*2-1 indice(1)*2 

indice(2)*2-1 indice(2)*2] ; 

xa=xx(indice(2))-xx(indice(1)); 

ya=yy(indice(2))-yy(indice(1)); 

length_element=sqrt(xa*xa+ya*ya); 

C=xa/length_element; 

S=ya/length_element; 

sigma(e)=E/length_element* ... 

[-C -S C S]*displacements(elementDof); 

end 

sigma1=sigma/1000; 

num=1:numberElements; 

stresses=[num' sigma1'] 

e. massStiffness2DRigidJointedTruss 
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function [mass]=... 

massStiffness2DRigidJointedTruss(GDof,numberE

lements,... 

elementNodes,numberNodes,xx,yy,rhoA); 

mass=zeros(GDof); 

% computation of the system stiffness matrix 

for e=1:numberElements; 

% elementDof: element degrees of freedom (Dof) 

indice=elementNodes(e,:) ; 

elementDof=[ indiceindice+numberNodes 

indice+2*numberNodes]; 

nn=length(indice); 

xa=xx(indice(2))-xx(indice(1)); 

ya=yy(indice(2))-yy(indice(1)); 

length_element=sqrt(xa*xa+ya*ya); 

cosa=xa/length_element; 

sena=ya/length_element; 

ll=length_element; 

L= [cosa*eye(2) sena*eye(2) zeros(2); 

-sena*eye(2) cosa*eye(2) zeros(2); 

zeros(2,4) eye(2)]; 

oneu=[1 -1;-1 1]; 

oneu2=[1 -1;1 -1]; 

oneu3=[1 1;-1 -1]; 

oneu4=[4 2;2 4]; 

M1=zeros(6,6); 

mm = rhoA*ll/420; 

ma=rhoA*ll/6; 

M1=[2*ma 0 0 ma 0 0;... 

    0 156*mm 22*ll*mm 0 54*mm -13*ll*mm;... 

    0 22*ll*mm 4*ll*ll*mm 0 13*ll*mm -

3*ll*ll*mm;... 

ma 0 0 2*ma 0 0;... 

    0 54*mm 13*ll*mm 0 156*mm -22*ll*mm;... 

    0 -13*ll*mm -3*ll*ll*mm 0 -22*ll*mm 

4*ll*ll*mm] 

mass(elementDof,elementDof)=... 

mass(elementDof,elementDof)+L'*M1*L; 

end 

f. formStiffness2DRigidJointedTruss 

function [stiffness]=... 

formStiffness2DRigidJointedTruss(GDof,numberE

lements,... 

elementNodes,numberNodes,xx,yy,EI,EA); 

stiffness=zeros(GDof); 

% computation of the system stiffness matrix 

for e=1:numberElements; 

% elementDof: element degrees of freedom (Dof) 

indice=elementNodes(e,:) ; 

elementDof=[ indiceindice+numberNodes 

indice+2*numberNodes] ; 

nn=length(indice); 

xa=xx(indice(2))-xx(indice(1)); 

ya=yy(indice(2))-yy(indice(1)); 

length_element=sqrt(xa*xa+ya*ya); 

cosa=xa/length_element; 

sena=ya/length_element; 

ll=length_element; 

L= [cosa*eye(2) sena*eye(2) zeros(2); 

-sena*eye(2) cosa*eye(2) zeros(2); 

zeros(2,4) eye(2)]; 

oneu=[1 -1;-1 1]; 

oneu2=[1 -1;1 -1]; 

oneu3=[1 1;-1 -1]; 

oneu4=[4 2;2 4]; 

k1=[EA/ll*oneu zeros(2,4); 

zeros(2) 12*EI/ll^3*oneu 6*EI/ll^2*oneu3; 

zeros(2) 6*EI/ll^2*oneu2 EI/ll*oneu4]; 

stiffness(elementDof,elementDof)=... 

stiffness(elementDof,elementDof)+L'*k1*L; 

end 

g. bendingstresses2Dtruss 

function 

bendingstresses2Dtruss(numberElements,elementN

odes,numberNodes,... 

xx,yy,displacements,E,Ymax) 

% stresses at elements 

format 

for e=1:numberElements; 

indice=elementNodes(e,:); 

elementDof=[ indiceindice+numberNodes 

indice+2*numberNodes] ; 

nn=length(indice); 

xa=xx(indice(2))-xx(indice(1)); 

ya=yy(indice(2))-yy(indice(1)); 

length_element=sqrt(xa*xa+ya*ya); 

L=length_element; 

C=xa/length_element; 

S=ya/length_element; 

sigmax(e)=E*Ymax* ... 

[(-6*S)/(L*L) (-6*S)/(L*L) (-6*C)/(L*L) 

(6*C)/(L*L) (-4)/(L) 

2/L]*displacements(elementDof); 

sigmal(e)=E*Ymax* ... 

[(-6*S)/(L*L) (6*S)/(L*L) (6*C)/(L*L) (-

6*C)/(L*L) (2)/(L) 

4/L]*displacements(elementDof); 

end 

sigma1=-sigmax/1000; 

sigma2=-sigmal/1000; 

num=1:numberElements; 

Bendingstresses=[num' sigma1' sigma2'] 

 

h. femodal 

function[omega,Vnorm,Modf]=femodal(mass,stiffn

ess,F) 

%variable 

[n,n]=size(mass); 

[n,m]=size(F); 

[V,D]=eig(stiffness,mass); 

[Lamda,k]=sort(diag(D));V=V(:,k); 

Factor=diag(V'*mass*V); 
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Vnorm=V*inv(sqrt(diag(Factor))); 

omega=diag(sqrt(Vnorm'*stiffness*Vnorm)); 

Modf=Vnorm'*F; 

 

MATLAB PROGRAM FOR THE ANALYSIS 

PIN JOINTED PLANE TRUSS STRUCTURES 

(STATIC AND MODAL ANALYSIS) 

%Ebu's Plane Truss Program (EPTP)  

format 

%................................................................ 

% static / dynamic analysis of plane trusses 

% clear memory 

clearall 

% E; modulus of elasticity 

% A: area of cross section 

% L: length of bar 

E=205e9; A=0.000569; EA=E*A; 

rho=7850;rhoA=rho*A; 

% generation of coordinates and connectivities 

elementNodes=[1 2;2 3;3 4;4 5;5 6;6 7;7 8;8 9;9 

10;10 11;12 13;13 14;14 15;15 16;16 17;17 18;18 

19;19 20; 1 12;11 20;3 12;5 14;7 16;9 18;9 20;7 

18;5 16;3 14;2 12;3 13;4 14;5 15;6 16;7 17;8 18;9 

19;10 20]; 

nodeCoordinates=[0 0;3 0;6 0;9 0;12 0;15 0;18 

0;21 0;24 0;27 0;30 0;3 3;6 3;9 3;12 3;15 3;18 3;21 

3;24 3;27 3]; 

numberElements=size(elementNodes,1); 

numberNodes=size(nodeCoordinates,1); 

xx=nodeCoordinates(:,1); 

yy=nodeCoordinates(:,2); 

% for structure: 

% displacements: displacement vector 

% force : force vector 

% stiffness: stiffness matrix 

GDof=2*numberNodes; % GDof: total number of 

degrees of freedom 

U=zeros(GDof,1); 

force=zeros(GDof,1); 

% applied load at node 2 

force(24)=-100.0; 

force(26)=-200.0; 

force(28)=-200.0; 

force(30)=-200.0; 

force(32)=-200.0; 

force(34)=-200.0; 

force(36)=-200.0; 

force(38)=-200.0; 

force(40)=-100.0; 

force(39)=300.0; 

% computation of the system stiffness matrix 

[stiffness]=... 

formStiffness2Dtruss(GDof,numberElements,... 

elementNodes,numberNodes,nodeCoordinates,xx,y

y,EA); 

[mass]=... 

formMass2Dtruss(GDof,numberElements,... 

elementNodes,numberNodes,nodeCoordinates,xx,y

y,rhoA); 

% boundary conditions and solution 

prescribedDof=[1 2 21 22]'; 

% solution 

displacements=solution(GDof,prescribedDof,stiffn

ess,force); 

% drawing displacements 

clf 

holdon 

% stresses at elements 

stresses2Dtruss(numberElements,elementNodes,xx,

yy,displacements,E); 

% output displacements/reactions 

DisplacementsReactions(displacements,stiffness,G

Dof,prescribedDof); 

%apply constraints 

[stiffness,mass]=feaplycsm(stiffness,mass,prescribe

dDof); 

fsol=eig(stiffness,mass); 

fsol2=sqrt(fsol); 

fsol1=0.159171*fsol2; 

%print fem solutions 

num=1:1:GDof; 

frequency=[num' fsol1] 

 

MATLAB PROGRAM FOR THE ANALYSIS 

OF RIGID JOINTED PLANE TRUSS 

STRUCTURES (STATIC AND MODAL 

ANALYSIS) 

clearall 

% E; modulus of elasticity 

% I: second moment of area 

% L: length of bar 

format 

E=205e9; A=0.000569; EA=E*A; 

rho=7850;rhoA=rho*A; I=0.00000841; EI=E*I; 

Ymax=0.0205; 

% generation of coordinates and connectivities 

elementNodes=[1 2;2 3;3 4;4 5;5 6;6 7;7 8;8 9;9 

10;10 11;12 13;13 14;14 15;15 16;16 17;17 18;18 

19;19 20; 1 12;11 20;3 12;5 14;7 16;9 18;9 20;7 

18;5 16;3 14;2 12;3 13;4 14;5 15;6 16;7 17;8 18;9 

19;10 20]; 

nodeCoordinates=[0 0;3 0;6 0;9 0;12 0;15 0;18 

0;21 0;24 0;27 0;30 0;3 3;6 3;9 3;12 3;15 3;18 3;21 

3;24 3;27 3]; 

numberElements=size(elementNodes,1); 

numberNodes=size(nodeCoordinates,1); 

xx=nodeCoordinates(:,1); 

yy=nodeCoordinates(:,2); 

% for structure: 

% displacements: displacement vector 

% force : force vector 

% stiffness: stiffness matrix 
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% GDof: global number of degrees of freedom 

GDof=3*numberNodes; 

U=zeros(GDof,1); 

force=zeros(GDof,1); 

%force vector 

force(32)=-100.0; 

force(33)=-200.0; 

force(34)=-200.0; 

force(35)=-200.0; 

force(36)=-200.0; 

force(37)=-200.0; 

force(38)=-200.0; 

force(39)=-200.0; 

force(40)=-100.0; 

force(20)=300.0; 

F=[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0]'; 

% stiffness matrix 

[stiffness]=... 

formStiffness2DRigidJointedTruss(GDof,numberE

lements,... 

elementNodes,numberNodes,xx,yy,EI,EA); 

[mass]=... 

massStiffness2DRigidJointedTruss(GDof,numberE

lements,... 

elementNodes,numberNodes,xx,yy,rhoA); 

% boundary conditions and solution 

prescribedDof=[1 31 2 32]'; 

% solution 

displacements=solution(GDof,prescribedDof,stiffn

ess,force); 

% output displacements/reactions 

DisplacementsReactions(displacements,stiffness,... 

GDof,prescribedDof) 

bendingstresses2Dtruss(numberElements,elementN

odes,numberNodes,... 

xx,yy,displacements,E,Ymax) 

axialstresses2Dtruss(numberElements,elementNod

es,numberNodes,... 

xx,yy,displacements,E) 

[stiffness,mass]=feaplycsm1(stiffness,mass,prescri

bedDof); 

fsol=eig(stiffness,mass); 

fsol2=sqrt(fsol) 

fsol1=0.159171*fsol2; 

%print fem solutions 

num=1:1:GDof; 

frequency=[num' fsol1] 

[omega,Vnorm,Modf]=femodal(mass,stiffness,F) 

% drawing undeformed and deformed meshes 

U=displacements; 

clf 

drawingMesh(nodeCoordinates+500*[U(1:number

Nodes)... 

U(numberNodes+1:2*numberNodes)],elementNod

es,'L2','k.-'); 

drawingMesh(nodeCoordinates,elementNodes,'L2','

k--'); 

 

TABLE 3.1 REACTION FORCES 

NO. REACTION(KN) PIN JOINT REACTION(KN) RIGID JOINT 

F1 1450 1459.5 

F2 700 770 

F21 -1750 -1759.5 

F22 830 830 

 

TABLE 3.2 AXIAL AND BENDING  STRESSES 

 PIN JOINT RIGID JOINT BENDING STRESSES 

FOR RIGID JOINT 

(Mpa) 

ELEMENT 

NO. 

AXIAL STRESS(Mpa) AXIAL STRESS 

(Mpa) 

At x=0 x=L 

1 -1195.08 1206.3 -15.24 483.96 

2 -1195.013 1157.6 -117.3 488.29 

3 808.37 -786.8 -23.98 267.91 

4 808.4 8116.9 -102.83 178.05 

5 1405.98 -1.3925 -3.40 -86.77 

6 1405.98 -1390.5 -70.12 -173.97 

7 598 -604.9 36.50 -411.56 

8 597.54 -575.7 -19.01 -419.86 

9 -1616.87 1573.2 99.86 -549.02 

10 -1687.87 1625.2 33.56 -396.42 

11 -2530.76 2460.9 -129.03 515.62 
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12 -2530.76 2500.2 -11.94 245.71 

13 -3831.28 3764.5 -116.17 196.70 

14 -3821.28 3776.0 11.12 -101.78 

15 -3725.84 3673.5 -85.85 -162.58 

16 -3725.84 3657.9 53.45 -419.33 

17 -2214.41 2188.6 -37.07 -415.73 

18 -2214.41 2145.2 119.94 -549.77 

19 -1913.79 1909.9 38.22 284.81 

20 -2062.91 2061.3 -45.93 -263.80 

21 1665.24 -1502.1 -27.71 291.43 

22 671.07 -559.6 -8.61 242.87 

23 -323.11 387.2 -6.45 112.93 

24 -1317.28 1334.8 -18.01 -68.27 

25 1814.37 -1643.3 31.52 -245.38 

26 820.19 -701.6 10.09 -211.29 

27 -173.98 245.2 5.90 -91.46 

28 -1168.16 1192.7 15.41 83.79 

29 0 -38.4 98.56 243.7 

30 -351.49 286.2 83.37 132.79 

31 0 -32.5 51 108.77 

32 -351.49 287.9 24.56 64.52 

33 0 -32.5 -4.14 45.60 

34 -351.49 287.9 -33.22 28.28 

35 0 -32.8 -59.31 -23.30 

36 -351.49 286.0 -92.16 51.27 

37 0 -41.7 -105.53 -176.54 

 

TABLE 3.3 NATURAL FREQUENCIES 

MODES NATURAL FREQUENCIES 

(HETZ) FOR PIN JOINT 

NATURAL FREQUENCIES 

(HETZ) FOR RIGID JOINT 

1 10.53 14.2 

2 27.05 35.23 

3 49.3 62.43 

4 53.91 66.14 

5 81.29 74.89 

6 94.34 80.97 

7 110.16 83.29 

8 123.34 86.72 

9 157.41 88.95 

10 158.95 92.5 

11 189.64 97.75 

12 189.64 98.95 

13 197.22 101.65 

14 218.08 104.39 

15 245.23 107.26 

16 261.83 111.32 

17 300.37 118.05 

18 305.41 127.88 

19 373.05 130.31 

20 374.07 140.95 

21 377.43 144.52 

22 377.60 160.20 

23 379.11 162.85 

24 381.67 172.04 
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25 385.5 185.48 

26 395.32 195.40 

27 396.69 202.28 

28 396.83 209.61 

29 407.4 214.54 

30 438.82 227.82 

31 465.14 236.04 

32 482.51 265.20 

33 517.5 274.19 

34 519.48 301.87 

35 539.95 306.26 

36 556.86 324.83 

37  345.65 

38  379.04 

39  385.49 

40  387.29 

41  400.85 

42  412.11 

43  423.57 

44  428.41 

45  438.17 

46  456.01 

47  458.68 

48  464.09 

49  472.53 

50  477.45 

51  491.43 

52  502.20 

53  504.27 

54  552.88 

55  594.02 

56  620.51 

 

3.3 DISCUSSION OF RESULTS 

 The analysis of rigid jointed plane truss 

structures using finite element analysis procedure 

carried out in this work was done in two phases. 

The first phase took into account the static analysis 

of plane truss structure with pin joints and that with 

rigid joints. The static analysis parameters are 

displacements, support reactions, axial stresses and 

bending stresses in terms of rigid jointed plane 

truss structure. The second phase dealt with modal 

analysis of both pin jointed and rigid jointed 

trusses. In this phase, parameters such as natural 

frequency mode shapes(amplitudes of vibration) of 

the structure were sort. 

 ROBOT structural analysis software was 

used to model and analyze the same plane truss 

analyzed in this work with the assumption of pin 

joints and the results obtained from manual 

analysis with the aid of MATLAB program agreed 

with insignificant difference. 

 Lastly, finite element analysis 

formulations were used to analyze plane trusses 

with uniform loading and out of joint loading.  

 

3.31 STATIC ANALYSIS 

3.311 DISPLACEMENTS 

The displacements obtained at each joint 

for pin jointed plane truss were close to those 

obtained using rigid joints except for the rotation 

displacement which is only applicable to rigid 

joints and not in pin joints. For example, in 

numerical example 1, node 2 has horizontal 

displacement (U5) =-34.98mm and vertical 

displacement (U6) =-522.6mm while for the same 

node in numerical example 2 (rigid jointed), 

horizontal displacement (U2) =-17.65, vertical 

displacement (U23) = -510.66mm and rotation(U43) 

= -71.328 

 

3.312 AXIAL STRESSES 

Axial stresses for both pin and rigid joints 

were approximately the same. The axial forces are 
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slightly smaller in most members when rigid joints 

were assumed because a portion of the load is 

transmitted by shear and bending. This can be 

verified from results from numerical example 1 and 

2. For example, member 2 has axial stress of 

1195mpa when pin joint was assumed and 

1157.6mpa when rigid joint was used. 

 

3.313 BENDING STRESSES 

 It is shown from the results that bending 

stresses which is significant when plane trusses are 

analyzed in its true state of rigid joints are smaller 

than the axial stresses for the same member and the 

same condition of loadings. For example member 

in numerical example 2 when rigid joint was 

assume has bending stress of 488mpa while axial 

stress for that of pin jointed is 1195mpa. 

 

3.314  PLANE TRUSSES WITH UNIFORMLY 

DISTRIBUTED LOADS AND OUT OF JOINT 

LOADINGS 

Tutorial 3 showed how finite element 

formulations can be used to analyze plane trusses 

with loadings apart from the usual assumption of 

point loads only at the joints. The results obtained 

for displacements, supports reactions, axial stresses 

and bending stresses were highly reliable. 

 

3.32 MODAL ANALYSIS 

In modal analysis, the natural frequency 

and modes shapes of the structure were sort. The 

fundamental natural frequency of the structure 

when pin joints were assumed is 

10.53cycles/seconds and 14.1997cycles/seconds 

when rigid joints were assumed for the same 

structure geometry and composition. It therefore 

means that for plane trusses of the same geometry 

and composition, resonance will deem to have 

occurred faster in the one with pin joints than the 

one with rigid joints. Figures 3.3 and 4.4 also show 

the difference in the fundamental mode shapes 

which entails that figure 3.4 shows a sharp 

resonating frequency within a very shorter time 

while figure 3.4 resonate senosoidally. 

 
FIG. 3.3 RIGID JOINTED TRUSS 
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FIG.4.4 PIN JOINTED TRUSS 

 

II. CONCLUSIONS AND 

RECOMMENDATIONS 
The results of the analysis and methodology of 

work show that; 

(a) There was clear understanding in the use of 

finite element analysis techniques in analysis 

of plane truss structures.. 

(b) Comparison of results were achieved in both 

cases of pin and fixed - joints. Smaller axial 

stresses were obtained for the same members 

when fixed joint was used in the analysis. In 

the case of dynamic analysis, it is seen from 

the results that the structure where frictionless 

pin joints are assumed resonate faster than 

those with rigid joints, therefore making the 

structure not economical during damping and 

also not given a true mode shape of the 

structure. 

(c) Finite element analysis techniques were 

properly used in formulating equations of 

strain and stresses in rigid jointed plane 

trusses.  

(d) .Finite element analysis techniques 

interpolation functions were successfully used 

in deriving equivalent nodal forces for plane 

trusses subjected to uniformly distributed loads 

and point loads acting at any portion of the 

truss member other than the joint. 

(e) MATLAB program was developed and run for 

static and dynamic analysis for both pin and 

rigid joint connections. 

(f) It is also concluded that plane truss structures 

can be best analyzed in its true state of loading 

other than assuming loads to only act at joints 

so that results obtained can represent the true 

service condition. 

Therefore, the following recommendations are 

made; 

(a) Plane truss structures should be analyzed in its 

true state rather than the assumptions of 

frictionless pin joints and loads acting only at 

the joint for the purpose of simplifying the 

analysis so as to achieve more reliable results. 

(b) Writing of simple MATLAB programs should 

be encouraged in analyzing plane truss 

structures so that analysis can be simplified in 

its true state rather than used simplified 

assumptions. 

(c) Plane truss structures should be analyzed in it 

true state of loading so as to have true 

deformation of the structure. 

 

Finally, this work has been able to contribute the 

following to knowledge: 

1. Development of finite element model for the 

analysis of fixed jointed plane trusses. 

2. Showing the importance of analyzing plane 

trusses in its true joint condition other than  

assuming simplified conditions by comparing 

the results between pin and rigid jointed plane 

trusses. 

3. By using finite element analysis techniques 

interpolation to develop equivalent nodal 

forces for all kinds of loadings on the truss 

members.   
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